Application Architectures



Layered structure

Division of the work of an application into 3 general
functions, which can evolve independently:

* Presentation:

user input and commands, and display

* Business logic:
business objects, rules, processing logic, processes

"

* Data: @
storage and logical access r




Distribution onto « Tiers »

SERVER

network

CLIENT

Distribution of the layers onto multiple machines

(“tiers”) communicating over a network
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Monolithic
and Single-
tier
Applications




Monolithic application

The 3 application layers are intimately interlaced in the
same code base

data

import java.io.*; management
public class ReadFromFile {
public static void main(Strin args) throws Exception {

File file = new File("C:\\Users\\galtier\\Desktop\\test.txt");
BufferedReader br = new BufferedReader(new FileReader(file));

String st;
while ((st = br.readLine()) !'= null)
System.out.println(st.toUpperCase()); —  *| presentation
encrypt(file, "mySecretKey");
} business

} logic




Single-tier Application

The 3 application layers run on the same computer

data
management

business
logic
présentation




1st architectural style, but still
relevant

* The area of “pre- * Still lots of stand-alone
network” PCs (late 70’s  apps
- mid 80’s)
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Advantages of single-tier

* Performance: O latency

» Safety by isolation

* Operate even in disconnected mode

 Simplicity (complexity reduced to the one of the code)



Disadvantages of monolithic applications

* Code is complex to learn,
debug and evolve

* Even a minor upgrade
requires a complete
reinstallation of the entire
application

* Afailure in one “layer”
renders the application
completely unusable

* Inability to leverage
heterogeneous technologies

* Not cloud-ready
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Disadvantages of single-tier
applications e

“I'm a stand-alone PC but |'m lonely and
rt of a popular network.”

* Performances: depend on the capabilities of the host

omputer

* Shared resources impossible, requires duplicates (waste of
resources)

e No fault tolerance

* Nomadism is difficult:
* Access limited to physically logged-in users

* More difficult (if not impossible) to continue a task from a different
workstation

https://encyclopedia2.thefreedictionary.com/standalone+c

* Deployment is difficult:
* Requires actions on each terminal
* To be reinstalled if the underlying system needs to be reinstalled

* From the publisher's point of view:
* No fix possible without user action
* Application vulnerable to reverse engineering
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Principle

https://www.researchgate.net/figure/Mainframe-Architecture_fig2_275405572

“host” Architecture

* Supercomputer :

e ensures the data Ko My
persistence, processing,
and presentation

* proprietary hardware
and OS (IBM)
* passive clients :

thin client visualization
application

Terminal

Terminal

Mainframe

g O

on_november_21st/

https://www.reddit.com/r/mainframe/comments/dgq8pny/online_ibm_z_day_



Advantages

* Performances: handle a very large number of
simultaneous queries on very large databases

* Consistency, stability and long-term support
* Security
e Reliability (IBM Z customers: 99.9999% uptime)

RO b U St n eSS . https://www.ibmmainframeforum.com/mainframe-videos/topic10889.html




Performances

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfworklds.htm

* Ability to process a very large number of simultaneous

qgueries on very large databases

Batch or real time operation:

Batch job

e Batch back-office

Online (interactive) transaction

. =1 Query | —
* Transactional g‘! Reply

] .] Application
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perform a particular task

Application
rogram
prog
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behalf of an online user

e Used in banks, insurance companies, airlines...
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Transactions

* Program accessing and/or modifying persistent data

* A good transaction is
* Atomic
* Consistent
* |solated
* Durable

* Transactional monitor ("TP monitor")
Schedules transactions executed in parallel
* Multiplexing of requests on system resources
* Transaction management (respect of ACID properties)

Server
Reply
Reques

Transaction
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Extensively used

e 71% of the Fortune 500, 96 of the top 100 banks use
mainframes

* process 30 billion business transactions per day, 87%
of credit card transactions

e 250 billion lines of COBOL code, and 5 billion new lines
each year

* Growth Outlook:
* demand for HPC
* increase in the number of banking transactions
* development of blockchain



Obstacles to growth

* Proprietary solutions

* Huge investment
* but no more than a

(https://pla netmainfr§r$.[o¥gogltgtcmm-mainframe-the-most-

powerful-and-cost-effective-computing-platform-for-business/

* Shortage of skilled
mainframe staff

* but Cobol is easy to learn

e Real alternatives +
migration experience
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https://www.astadia.com/blog/break-free-from-your-z13-mainframe
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The origin: “1.5-tier” Architecture

* Development of LANs

presentation

workstations / heavy clients business logic

;, ’: ! g/ data

management

local network

data

file server
(shared data storage,
but data management service reduced to tree-like organization of files)

* Advantages: information sharing:
* better communication
* requires less resources



2-tier Architecture

presentation data

business logic \ management
; §§J il SQL

DBMS

e Central database server

* Manages physical I/0 and provides logical data
manipulation

* |ntegrity control
* Secure, optimized, transactional access

* Data handling is decoupled from its representation on
disk, closer to the application logic



2-tier Architecture limits

* identical problems to single-tier:
Not tolerant to client or server failures, updates require
user’s action...
* excessive use of stored procedures:
* breaks the principle of single responsibility
* complex to maintain
* adherence with the physical model

* performance :
Server and access network = bottlenecks



Thank you, 2-tier Architecture

* Microcomputing (previously confined to office
automation) has taken on a growing role in IS

* The DBMS offer has grown, SQL has become
widespread

* Has triggered the evolution towards more flexible
architectural proposals

* Still relevant for simple applications



Presentation Layer

Business Logic Layer

3

Data Access Layer \ 3-tier to o-tier
S sy ArChitectures

Sourcr




3-tier

Client/Presentation Server/Application Database/
Layer Layer Data Layer
: : : data
presentation business logic
manag ement




Example:
Classical Web Architecture

Users

a a & a a C) & a & Software Technologies

Client-side Programming:

Ajax, Java Applets, Adobe Flex,
JSP/ASPIPHP, Java Script

| Model Forms & Graph Results
| Interface Scripts Tools Analysis
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4-tier, 5-tier

Client Layer

Browser
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Perspectives for multi-tier architecture

* Corrects some of the problems of 2-tier architecture
* Maintainability, evolvability, deployment

* Very popular model for non-intensive systems

* But to be completed to meet the challenges of
reliability, performance, and scalability



Micro-services
Architecture




Siloed Architecture
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Problems with siloed architecture

* Waste of resources

* Complex maintenance

* Lack of data sharing and consistency

e Complexity of IAM (ldentity and Access Management)
* Difficult to scale up



Microservices Architecture
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(Micro)Service Concept

 Black box performing 1 specific task (business or
technical function)

e Can be used via an API (= contract between the
customer and the supplier)

e Can call on other services

* Designed to be duplicated — stateless:
* No application state
* Or client-specific state provided in the request
* Or state on external storage shared with other services



Advantages of the microservice
architecture

* Reuse

* Scaling and fault tolerance thanks to easy duplication
* Fault isolation

* Independent development and deployment

* Ability to use the most appropriate technology for each
module

* Small development teams
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No silver bullet...

* The entropy of the IS increases as well!

* Several examples of strategic retreats on a monolithic
solution!

* Microservices do not correct design errors.
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* Intercommunication between services can lead to a
higher latency of the application and the network
quality becomes crucial

https://twitter.com/_zenx
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Middleware

Solutions to ease the connection between services:

* Locally:
* [nter-process communication: system, MPI, Unix Domain
Socket, etc
* Across the network:
* Synchronous Remote Procedure Call
* Asynchronous Messages



https://www.ibm.com/support/knowledgecenter/ssw_aix_72/commprogramming/rpc_mod.html

apparent flow
call
: Manager
Client return Procedures
h
call return return call
Interface
k.

Client Stub Server Stub
call return return l call
RPC Runtime '[ RPC Runtime

Library Library
network
messages

Client process Server process

and

Remote Procedure Call Flow

Remote Procedure Call

Object Request Broker

(RPC)

(ORB)



RPC

[asynchronous] loose coupling between client and server

client server
instruction 1 fac(int a, int b) {
v temp =
o for 1 from 1 to b
—» = -
r fac(x, y) application laydr temp = temp * a
v return temp
instruction k }
|
| v
déballe le emballe le nom reconstitue I'appel emballe le
résultat de la méthode et avec le nom de la résultat
ses parametres méthode et ses
I parametres
; A
réceptionne envoie recoit la requéte envoie
J OS and hardware layer [
. send f » receilve
receive < HELVOIX send

* The proxies handle:
* network calls
e format transformations between the client and server



(some) RPC implementations and
frameworks

* Rise:
e 80’s: Sun RPC (as part of NFS protocol): simple, limited to Unix systems

* 90’s: DCE RPC (Open Software Foundation): platform-independent, rich set of
functionalities (transactions, encryption...), more complex to use

e Fall;

* 94: RPC is “fundamentally flawed”: communication latency, partial failures and
concurrency issues...

* Message passing alternatives

* Rise, again: more features, more supported formats/transports...

* 98: XML-RPC: data are XML-formatted and exchanged over HTTP -> SOAP

* 2005: JSON-RPC, lightweight

e 2007: Apache Thrift (init. Facebook): support for multiple serialization format
(including binary), support for multiple transport protocols, complete stack for
creating clients and servers

e 2009: Avro (Apache Hadoop)

* 2016: gRPC (Google, open source): messages serialized using Protocol Buffers
(binary), transported by HTTP/2, multiple features

e 2021: Cap’n Proto (now developed by Cloudflare): performances!



Object Request Broker

* Object oriented RPC: method calls on remote objects

* Most popular technologies:
* CORBA (Common Object Request Broker Architecture) (1991)

* OO-RPC for heterogeneous objects
* but also a set of services

High-level horizontal frameworks )
Vertical frameworks System functions

CORBA CORBA CORBA Services
Domains Facilities

Application
Objects

‘@

cryptography
QoS

@ € manag
commerce ement

ORB

* DCOM (Distributed Component Object Model) (1995), .Net Remoting
* Microsoft-equivalent to CORBA

* Java RMI (Remote Method Invocation) (1998)

* for Java objects



CORBA perspectives

* Limitations:
* local calls are treated the same as remote calls = inefficient
* complex standard
* difficult to have different versions of a service coexisting
* fewer and fewer experts

* Why hasn't it disappeared?
* still important legacy
* one of the few candidates (with DDS) when there are strong

real time constraints

Alcatel-Lucent network management system, communications
between military planes and ESA satellites, air control systems,
Siemens electrical power plant management system...



Service call

* 1srt generation Web Services:
* Requests and responses transported by SOAP messages,
usually on top of HTTP

* 4 patterns supported by WSDL:
* Request - response
* One way request
* Notification
* Request - response

* WS-*: myriad of specifications to complete the messaging
service

* Web service in a REST architecture:

e URI-addressed resources

* Requests and responses typically carried over HTTP,
exploiting the semantics of HTTP methods
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Message Oriented Middleware

* Structure allowing one or more sources to transmit
messages asynchronously to one or more destinations
* No need to be connected simultaneously
* Not need to know the source / the destination

T
E Message based
g communications
2 Application A Application B
E Messaging APl Messaging APl
: - - Messaging Message -

Messaging dhient | system o Messaging client

Message

Message oriented middleware

https://www.oreilly.com/lib



Optional Features

e Strict FIFO (, guaranteed delivery of messages in the right order) or
hierarchical organization of messages, priority levels

* Point-to-point: a message read by a destination is no longer available
for the others, or Publish-Subscribe : all subscribers to the queue
receive a copy of each message (guaranteed delivery: at least once or
exactly once)

* message filtering

* encryption/decryption functions, compression/decompression,
format transformation

* message retention for offline consumers

* message expiration or validity date

* persistence (on physical media)

e reliability (Ack from MOM to sender and Ack from receiver to MOM)
* transactions



Evolution of MOMs

e 95-2010: Earlier versions
e 1994: IBM MQSeries (now IBM MQ): pioneer commercial MOM
1994: TIBCO Rendezvous: high performance
1996: Microsoft MSMQ, part of Microsoft Windows Server platform
1998: Oracle MQ, now open source
1999: FioranoMQ: HP for trading and finance
2004: Apache ActiveMQ (open-source, java-based)
e 2007: RabbitMQ (open-source, Erlang-based)

e 2010: Additional features:
e 2011: Kafka: HA, replicate...

* 2010’s: Integration with cloud technologies:
* 2011: Amazon Simple QS
e 2015: Google Cloud Pub/Sub

e 2018: IBM Event Stream (based on Kafka), easily integrates with IBM cloud
services

e 2018: Azure Service Bus
e 2019: CloudAMQP (based on RabbitMQ): automatic scaling



Overview
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