Application Architectures



Layered structure

Division of the work of an application into 3 general
functions, which can evolve independently:

* Presentation:

user input and commands, and display

* Business logic:
business objects, rules, processing logic, processes

"

* Data: @
storage and logical access r




Distribution onto « Tiers »

SERVER

network

CLIENT

Distribution of the layers onto multiple machines

(“tiers”) communicating over a network

data data data data data data
management | | management | | management | | management | | management | | management
business business business business
logic logic logic logic
presentation
data data
management | | management
business business business business
logic logic logic logic
presentation presentation presentation presentation presentation presentation
thin client rich client » heavy client




Monolithic
and Single-
tier
Applications




Monolithic application

The 3 application layers are intimately interlaced in the
same code base

data

import java.io.*; management
public class ReadFromFile {
public static void main(Strin args) throws Exception {

File file = new File("C:\\Users\\galtier\\Desktop\\test.txt");
BufferedReader br = new BufferedReader(new FileReader(file));

String st;
while ((st = br.readLine()) !'= null)
System.out.println(st.toUpperCase()); —  *| presentation
encrypt(file, "mySecretKey");
} business

} logic




Single-tier Application

The 3 application layers run on the same computer

data
management

business
logic
présentation




1st architectural style, but still
relevant

* The area of “pre- * Still lots of stand-alone
network” PCs (late 70’s  apps
- mid 80’s)

% TEXAS INSTRUMENTS
HOMECOMPUTER

TI-WRITER WO ROCESSOR

s.com/games/boxart/49494

https://games.alphacoder

https://play.google.com/store/apps/details?id=com.medibang.android.paint.tablet&hl=en_SG&gl=US



Advantages of single-tier

* Performance: O latency

» Safety by isolation

* Operate even in disconnected mode

 Simplicity (complexity reduced to the one of the code)



Disadvantages of monolithic applications

* Code is complex to learn,
debug and evolve

* Even a minor upgrade
requires a complete
reinstallation of the entire
application

* Afailure in one “layer”
renders the application
completely unusable

* Inability to leverage
heterogeneous technologies

* Not cloud-ready

NOT WANTED

down
***********

X 3t Y
THE MON 0 L IT ﬂ
FOR - EXPENSIVE TO SGALE - DIFFICULT TO

MANTAIN - REWARDS - MORE TIME WITH
FAMILY - GOOD SLEEP NIGHTS

zp//:sdny

1WO2-PAJUBM-}OU/S3|I1}IB/WOD U0



|

Disadvantages of single-tier
applications e

“I'm a stand-alone PC but |'m lonely and
rt of a popular network.”

* Performances: depend on the capabilities of the host

omputer

* Shared resources impossible, requires duplicates (waste of
resources)

e No fault tolerance

* Nomadism is difficult:
* Access limited to physically logged-in users

* More difficult (if not impossible) to continue a task from a different
workstation

https://encyclopedia2.thefreedictionary.com/standalone+c

* Deployment is difficult:
* Requires actions on each terminal
* To be reinstalled if the underlying system needs to be reinstalled

* From the publisher's point of view:
* No fix possible without user action
* Application vulnerable to reverse engineering



O
Q5
8 5
g8
==
< O
=, <t




Principle

https://www.researchgate.net/figure/Mainframe-Architecture_fig2_275405572

“host” Architecture

* Supercomputer :

e ensures the data Ko My
persistence, processing,
and presentation

* proprietary hardware
and OS (IBM)
* passive clients :

thin client visualization
application

Terminal

Terminal

Mainframe

g O

on_november_21st/

https://www.reddit.com/r/mainframe/comments/dgq8pny/online_ibm_z_day_



Advantages

* Performances: handle a very large number of
simultaneous queries on very large databases

* Consistency, stability and long-term support
* Security
e Reliability (IBM Z customers: 99.9999% uptime)

RO b U St n eSS . https://www.ibmmainframeforum.com/mainframe-videos/topic10889.html




Performances

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfworklds.htm

* Ability to process a very large number of simultaneous

qgueries on very large databases

Batch or real time operation:

Batch job

e Batch back-office

Online (interactive) transaction

. =1 Query | —
* Transactional g‘! Reply

] .] Application

". &
ET Input program > ﬁﬂl Output
data F-"rc:cesses data to g 1. data

perform a particular task

Application
rogram
prog
<+———— Accesses shared data on L8

behalf of an online user

e Used in banks, insurance companies, airlines...

HOE002-0



Transactions

* Program accessing and/or modifying persistent data

* A good transaction is
* Atomic
* Consistent
* |solated
* Durable

* Transactional monitor ("TP monitor")
Schedules transactions executed in parallel
* Multiplexing of requests on system resources
* Transaction management (respect of ACID properties)

Server
Reply
Reques

Transaction

981512862 /Sy SWa)sAs-pangLiisip-ul-lojHuow-d | -e-0-3]01-3y | /24n8y/3au-a3eSydieasarmmm//:sdiy

Requests
Client A > Reques,
- ( ] TP monitor Server |
application | 7 L
Reply
Repl
By Request
Reply Server

e



Extensively used

e 71% of the Fortune 500, 96 of the top 100 banks use
mainframes

* process 30 billion business transactions per day, 87%
of credit card transactions

e 250 billion lines of COBOL code, and 5 billion new lines
each year

* Growth Outlook:
* demand for HPC
* increase in the number of banking transactions
* development of blockchain



Obstacles to growth

* Proprietary solutions

* Huge investment
* but no more than a

(https://pla netmainfr§r$.[o¥gogltgtcmm-mainframe-the-most-

powerful-and-cost-effective-computing-platform-for-business/

* Shortage of skilled
mainframe staff

* but Cobol is easy to learn

e Real alternatives +
migration experience

W
N
N
N
N

https://www.astadia.com/blog/break-free-from-your-z13-mainframe

WE NEED COBOL
PROGRAMMERS FOR
OUR MAINFRAME

MILLENIUM PROBLEM,

\

S dms www.unitedmedia.com

IF YOU SEE ANYONE
WHO LOOKS LIKE

A COBOL PROGRAMMER,,
LET ME KNOW.

ARE YOU A COBOL
PROGRAMMER T

MO, BUT T'M OFTEN
TOLD T LOOK LIKE

N[4AT  © 1997 United Festurs Syndicate, Ine.

II!I Mainframe

Azure A

Apps
COBOL, PL/I, Assembler, Natural

Apps
COBOL, PL/I

tools

Scheduling
(TWS-OPC)

Security
(RACF)

Monitoring

System management

Print/output mgmt
(CA-SAR, SPOOL)

Transaction Transaction System management
manager manager system tools
CICS IMS TPM emulator Print/output mgmt
(SQL Server Reporting
Services, LRS)
Batch Batch syst
AELEYRIem Scheduling
JCL JES JCL (Azure Scheduler,
Tivoli)
Data migration Data migrati Security
9 ata migration (Azure Active
-——= e A —_— Directory)
== ' .' Monitoring
IMS, VSAM,  Db2, Azure SQL IMS, VSAM,
SEQ ADABAS Database SEQ

z/OS or Linux

Red Hat, SUSE, Windows Server




itecture

2-tier
Arch

p
i~
o
=
<
e
<
i,
2
i
g
=

Client Applications

/24N303})1YdJE-I31}-931U3}-PUE-ID1}-OM]-USIM]D[-20UISYIP-SI-}FeyM/W0°'sSe|dSULISDIDIeMPOS MMM //:sdnYy



The origin: “1.5-tier” Architecture

* Development of LANs

presentation

workstations / heavy clients business logic

;, ’: ! g/ data

management

local network

data

file server
(shared data storage,
but data management service reduced to tree-like organization of files)

* Advantages: information sharing:
* better communication
* requires less resources



2-tier Architecture

presentation data

business logic \ management
; §§J il SQL

DBMS

e Central database server

* Manages physical I/0 and provides logical data
manipulation

* |ntegrity control
* Secure, optimized, transactional access

* Data handling is decoupled from its representation on
disk, closer to the application logic



2-tier Architecture limits

* identical problems to single-tier:
Not tolerant to client or server failures, updates require
user’s action...
* excessive use of stored procedures:
* breaks the principle of single responsibility
* complex to maintain
* adherence with the physical model

* performance :
Server and access network = bottlenecks



Thank you, 2-tier Architecture

* Microcomputing (previously confined to office
automation) has taken on a growing role in IS

* The DBMS offer has grown, SQL has become
widespread

* Has triggered the evolution towards more flexible
architectural proposals

* Still relevant for simple applications



Presentation Layer

Business Logic Layer

3

Data Access Layer \ 3-tier to o-tier
S sy ArChitectures

Sourcr




3-tier

Client/Presentation Server/Application Database/
Layer Layer Data Layer
: : : data
presentation business logic
manag ement




Example:
Classical Web Architecture

Users

a a & a a C) & a & Software Technologies

Client-side Programming:

Ajax, Java Applets, Adobe Flex,
JSP/ASPIPHP, Java Script

| Model Forms & Graph Results
| Interface Scripts Tools Analysis

Q §

Server-side Programming:

[ Logic Tier | Analysis |
| ' Simulaticon |
| @E ‘Z\ Sk f::l‘;,’;:"” | ge'r;lets,P JEIPIFHPJASP, cel,
ython, Per
IData Handling | Webservers:
|

Storage "Iu’lsusllz:atmn

Retrieval Graph Layout Apache Tomcat

Conversion Central Server Interactivity Apache HTTP
+ XML/SQL

I Data Tier Databases:

MySQL, Oracl
Database, Data Y s

Warehouse and
External Data Sources

Data Formats:

|
|
| XML, SBML, OWL, SQL

sonewuogulolg ul sSuyallg - 800z 420300 - SwialsAs [ea130joiq Jo sjppow dauny SuisAjeue pue SuiSeuew ‘Suip|ing 1oy suoyediidde paseq-gap



4-tier, 5-tier

Client Layer

Browser

Tablet .

AN
&y
S'l."u' a.t: *

Presantation
Layer

Session
State

Management

Businaess
Layer

o '

-

Application
Logic

Processing

v

presentation

Integration
Layer

e

Data Accass

Massagmg

iy
(it
5

Sarvice
Integration

Data
Layer

{0

Database

Dealivary
System

business logic

N

data management

https://www.ajboggs.com/our-experiences/health-information-technology/sisonline-supports-assessment/sisonline-system-architecture/sissa-sis5_big/



Perspectives for multi-tier architecture

* Corrects some of the problems of 2-tier architecture
* Maintainability, evolvability, deployment

* Very popular model for non-intensive systems

* But to be completed to meet the challenges of
reliability, performance, and scalability



Micro-services
Architecture




Siloed Architecture

~ Check PR  Check ~ Calculate
Customer Status S Pl Ustomer Status e — = 1ppIng L harges B

w Determine Product |8 = Determine Product |
Avalabiity L Availability

erify [ Verify
l._....tr_ur'n-r Credit el Customer Credit

Grider Status

] R o .- -': W RS R iy

TN NN l‘ii |

0
h%rﬁletmg FII'ELI'I-E-E anrehouse LSINEss e
System E.y*stem Syst-n:rm System Mgmt. System Linit Par

https://www.slideshare.net/imcinstitute/service-oriented-architecture-soa-15-introduction-to-soa



Problems with siloed architecture

* Waste of resources

* Complex maintenance

* Lack of data sharing and consistency

e Complexity of IAM (ldentity and Access Management)
* Difficult to scale up



Microservices Architecture

= .mE Composed |
- Business
Instaliation Scheduling Process Customer Order  Bill Presentment/Payment Processes .
Check Check Check Check Creat Eieania:
E »
o

M L3 B B9 B4 B BT

Custom AS400 ﬂracle Red Frairie Hnuther External
Marketing Sales Flll-ill'll:.‘-il Viarehouse Trading

System System E]':l-tlm System  Mgmt System “onit partner



(Micro)Service Concept

 Black box performing 1 specific task (business or
technical function)

e Can be used via an API (= contract between the
customer and the supplier)

e Can call on other services

* Designed to be duplicated — stateless:
* No application state
* Or client-specific state provided in the request
* Or state on external storage shared with other services



Advantages of the microservice
architecture

* Reuse

* Scaling and fault tolerance thanks to easy duplication
* Fault isolation

* Independent development and deployment

* Ability to use the most appropriate technology for each
module

* Small development teams



DILBERT

BY SCOTT ADAMS

OF MEETINGS.

THE JEFF BEZOS RULE

= =
[L-JE RE GOING TO USE

Fomon e

IF I APPLY
ZEMO'S PARADOX
TO THE SLICE SIZE,
CAN T HAVE TNFINITE
ATTENDEES?

BEZOS SANYS YOU
SHOULD NEVER HAVE A
MEETING THAT IS S0

BIG YOU CAM'T FEED
EVERYONE WITH TLWO

AMD WHAT DOES
IT MEAN TO "FEED”
EVERYOMEF DO THEY
MEED TO BE TOTALLY

[ 5TOP BEING

=1

: I CAN EAT TWO
PIZZAS BY MYSELF.

ENGINEERS!

HOWJ DO YOU COUNT
THE PFEOPLE LWIHO HAVE
GLUTEN SENSITIVITY
AMD DOMT EAT PIZZAT

D S0 SoodE Adama IS T b Usvesrnyl Liniea

HOW DOES
CHEESE BREAD
FIT INTO THIS?




No silver bullet...

* The entropy of the IS increases as well!

* Several examples of strategic retreats on a monolithic
solution!

* Microservices do not correct design errors.

oNDLI T MIcROSERVICES

K e
A # RAR)
= | é‘iL

18 HEAD MoNSTER

_/status/999333740122902529

* Intercommunication between services can lead to a
higher latency of the application and the network
quality becomes crucial

https://twitter.com/_zenx



Mfddleware




Middleware

Solutions to ease the connection between services:

* Locally:
* [nter-process communication: system, MPI, Unix Domain
Socket, etc
* Across the network:
* Synchronous Remote Procedure Call
* Asynchronous Messages



https://www.ibm.com/support/knowledgecenter/ssw_aix_72/commprogramming/rpc_mod.html

apparent flow
call
: Manager
Client return Procedures
h
call return return call
Interface
k.

Client Stub Server Stub
call return return l call
RPC Runtime '[ RPC Runtime

Library Library
network
messages

Client process Server process

and

Remote Procedure Call Flow

Remote Procedure Call

Object Request Broker

(RPC)

(ORB)



RPC

[asynchronous] loose coupling between client and server

client server
instruction 1 fac(int a, int b) {
v temp =
o for 1 from 1 to b
—» = -
r fac(x, y) application laydr temp = temp * a
v return temp
instruction k }
|
| v
déballe le emballe le nom reconstitue I'appel emballe le
résultat de la méthode et avec le nom de la résultat
ses parametres méthode et ses
I parametres
; A
réceptionne envoie recoit la requéte envoie
J OS and hardware layer [
. send f » receilve
receive < HELVOIX send

* The proxies handle:
* network calls
e format transformations between the client and server



(some) RPC implementations and
frameworks

* Rise:
e 80’s: Sun RPC (as part of NFS protocol): simple, limited to Unix systems

* 90’s: DCE RPC (Open Software Foundation): platform-independent, rich set of
functionalities (transactions, encryption...), more complex to use

e Fall;

* 94: RPC is “fundamentally flawed”: communication latency, partial failures and
concurrency issues...

* Message passing alternatives

* Rise, again: more features, more supported formats/transports...

* 98: XML-RPC: data are XML-formatted and exchanged over HTTP -> SOAP

* 2005: JSON-RPC, lightweight

e 2007: Apache Thrift (init. Facebook): support for multiple serialization format
(including binary), support for multiple transport protocols, complete stack for
creating clients and servers

e 2009: Avro (Apache Hadoop)

* 2016: gRPC (Google, open source): messages serialized using Protocol Buffers
(binary), transported by HTTP/2, multiple features

e 2021: Cap’n Proto (now developed by Cloudflare): performances!



Object Request Broker

* Object oriented RPC: method calls on remote objects

* Most popular technologies:
* CORBA (Common Object Request Broker Architecture) (1991)

* OO-RPC for heterogeneous objects
* but also a set of services

High-level horizontal frameworks )
Vertical frameworks System functions

CORBA CORBA CORBA Services
Domains Facilities

Application
Objects

‘@

cryptography
QoS

@ € manag
commerce ement

ORB

* DCOM (Distributed Component Object Model) (1995), .Net Remoting
* Microsoft-equivalent to CORBA

* Java RMI (Remote Method Invocation) (1998)

* for Java objects



CORBA perspectives

* Limitations:
* local calls are treated the same as remote calls = inefficient
* complex standard
* difficult to have different versions of a service coexisting
* fewer and fewer experts

* Why hasn't it disappeared?
* still important legacy
* one of the few candidates (with DDS) when there are strong

real time constraints

Alcatel-Lucent network management system, communications
between military planes and ESA satellites, air control systems,
Siemens electrical power plant management system...



Service call

* 1srt generation Web Services:
* Requests and responses transported by SOAP messages,
usually on top of HTTP

* 4 patterns supported by WSDL:
* Request - response
* One way request
* Notification
* Request - response

* WS-*: myriad of specifications to complete the messaging
service

* Web service in a REST architecture:

e URI-addressed resources

* Requests and responses typically carried over HTTP,
exploiting the semantics of HTTP methods



n
U

Client

~[ Msg1

e I -

o

Message Oriented

Send

Destination

Middleware

i * I -

Client

J1-[]-
U u




Message Oriented Middleware

* Structure allowing one or more sources to transmit
messages asynchronously to one or more destinations
* No need to be connected simultaneously
* Not need to know the source / the destination

T
E Message based
g communications
2 Application A Application B
E Messaging APl Messaging APl
: - - Messaging Message -

Messaging dhient | system o Messaging client

Message

Message oriented middleware

https://www.oreilly.com/lib



Optional Features

e Strict FIFO (, guaranteed delivery of messages in the right order) or
hierarchical organization of messages, priority levels

* Point-to-point: a message read by a destination is no longer available
for the others, or Publish-Subscribe : all subscribers to the queue
receive a copy of each message (guaranteed delivery: at least once or
exactly once)

* message filtering

* encryption/decryption functions, compression/decompression,
format transformation

* message retention for offline consumers

* message expiration or validity date

* persistence (on physical media)

e reliability (Ack from MOM to sender and Ack from receiver to MOM)
* transactions



Evolution of MOMs

e 95-2010: Earlier versions
e 1994: IBM MQSeries (now IBM MQ): pioneer commercial MOM
1994: TIBCO Rendezvous: high performance
1996: Microsoft MSMQ, part of Microsoft Windows Server platform
1998: Oracle MQ, now open source
1999: FioranoMQ: HP for trading and finance
2004: Apache ActiveMQ (open-source, java-based)
e 2007: RabbitMQ (open-source, Erlang-based)

e 2010: Additional features:
e 2011: Kafka: HA, replicate...

* 2010’s: Integration with cloud technologies:
* 2011: Amazon Simple QS
e 2015: Google Cloud Pub/Sub

e 2018: IBM Event Stream (based on Kafka), easily integrates with IBM cloud
services

e 2018: Azure Service Bus
e 2019: CloudAMQP (based on RabbitMQ): automatic scaling



Overview

- .

= d"cd : v :ﬂ%m
U .

3 =I=[=EE =i =
Z a5 . B
o = : 00
o Mainframe PCs & ; Web ; Cloud

5 Servers

:

=

o

=

v

""'H'*

o

= :

< Maonaolithic " Client Server M-Tier = Service Oriented



	Application Architectures
	Layered structure
	Distribution onto « Tiers »
	Monolithic and Single-tier Applications
	Monolithic application
	Single-tier Application
	1st architectural style, but still relevant
	Advantages of single-tier
	Disadvantages of monolithic applications
	Disadvantages of single-tier applications
	Mainframe Architectures
	Principle
	Advantages
	Performances
	Transactions
	Extensively used
	Obstacles to growth
	2-tier Architecture
	The origin: “1.5-tier” Architecture
	2-tier Architecture (2)
	2-tier Architecture limits
	Thank you, 2-tier Architecture
	3-tier to 5-tier Architectures
	3-tier
	Example: Classical Web Architecture
	4-tier, 5-tier
	Perspectives for multi-tier architecture
	Micro-services Architecture
	Siloed Architecture
	Problems with siloed architecture
	Microservices Architecture
	(Micro)Service Concept
	Advantages of the microservice architecture
	Slide 34
	No silver bullet…
	Slide 36
	Middleware
	Remote Procedure Call (RPC) and Object Request Broker (ORB)
	RPC
	(some) RPC implementations and frameworks
	Object Request Broker
	CORBA perspectives
	Service call
	Message Oriented Middleware
	Message Oriented Middleware (2)
	Optional Features
	Evolution of MOMs
	Overview

