

Architectural Elements for

Scalability, HA & FT

Scalability

• Ability to handle growth

Scalability
• Ability to handle growth
• Can be measured as the ability to maintain latency in the face of

increased
• frequency of requests
• number of users
• volume of exchanged data
• distance between clients and servers

• Latency components:
• network latency
• server latency

• Elasticity:
• ability to dynamically adapt and scale resources up or down, based on

demand
→ optimized resource utilization: maintain performance, and manage costs

Mitigate network latency (under
increased load)

• (Data compression)
• (Network protocols optimization)
• Content Delivery Network
• Fog and Edge Computing

Content Delivery Network (CDN)

• Network of geographically distributed server replicas +
DNS to route the client to the closest mirror
• Additional benefits:
• Load balanced between servers (reduces server latency)
• Defense against DoS attacks
• Better fault tolerance

•Better suited to static content

htt
ps

:/
/w

w
w

.c
lo

ud
fla

re
.c

om
/le

ar
ni

ng
/c

dn
/w

ha
t-i

s-
a-

cd
n/

Fog computing and edge computing

• IoT objects generate a
lot of data
• Transmitting them to

the cloud for processing
and storage is
problematic
• Too much traffic
• Too much latency

• Idea: Leverage the
middle layers between
the cloud and objects

htt
ps

:/
/w

w
w

.n
tc

cl
ou

d.
vn

/d
ie

n-
to

an
-b

ie
n-

ed
ge

-c
om

pu
tin

g-
p3

44
7.

ht
m

l

Mitigate server latency (under
increased load)

• Cache
• Vertical scaling
• Horizontal scaling: replication + load balancing

Caches

• Principle:
• Keep the most frequently read data close to the user and

serve them without requesting the original server

• Objectives:
• Reduce latency
• Reduce servers load
• [increase fault tolerance]

• At different levels of
the architecture

https://loadstorm
.com

/2011/06/w
eb-application-perform

ance-optim
ization-part-1-w

eb-server-caching/

DB Caching Strategies
htt

ps
:/

/b
lo

g.
bl

uz
el

le
.c

om
/t

hi
ng

s-
yo

u-
sh

ou
ld

-k
no

w
-a

bo
ut

-d
at

ab
as

e-
ca

ch
in

g-
2e

84
51

65
6c

2d

Cache Aside

Read Through

Write Through

Write Behind

Vertical scaling (scale up)

• Improve or replace the existing server: increase the
capacity of a single server by adding resources (more
powerful CPUs, larger amount of RAM, or expanded
storage)

• a single node handles the entire workload, relies on
multi-threading to process multiple concurrent
requests

cl
ou

dz
er

o.
co

m

Horizontal scaling (scale out)

• Add nodes to the infrastructure and distribute the
load among nodes

Horizontal scaling (scale out)

• Add nodes to the infrastructure and distribute the
load among nodes

• Requirements:
• Compliant software architecture
• Load balancing mechanisms

cl
ou

dz
er

o.
co

m

Software architecture for horizontal
scaling

• Distribute functions
across multiple nodes
→ micro-services +
middleware

• As load increases,
duplicate nodes →
stateless services

Scaling out

Load balancing

https://docplayer.net/4134029-Software-as-a-service-saas-on-aws-business-and-architecture-overview.html

Replicas of the group of servers

How to balance the load between

Hardware load balancer

• Solution in decline
• non-virtualizable → not deployable in a cloud
• not elastic → must be oversized
• must be duplicated for HA
• more expensive than a subscription to a cloud load

balancing service

DNS-based load balancing

• Does not take into account the load of the servers
• Low reactivity to failures

htt
ps

:/
/d

oc
s.v

dm
s.

co
m

/c
dn

/C
on

te
nt

/R
ou

te
/A

dm
in

ist
ra

tio
n/

LB
_H

ow
_D

oe
s_

It_
W

or
k.

ht
m

Solfware load balancer

• Probe-based decisions
• Smarter balancing than with DNS
• Layer 4, Layer 7

htt
ps

:/
/w

w
w

.h
ap

ro
xy

.c
om

/f
r/

ho
m

ep
ag

e/

Horizontal / Vertical Scalability

Vertical (scale up) Horizontal (scale out)

principle

increase in server power (CPU,
memory, I/O)

multiplication of resources and
distribution of treatments

Extensibility Limited Important

Elasticity None Yes
Influence on the
code None Redesign potentially needed

to make it distributed and stateless
Configuration Easy Complex (LB, middleware…)

upgrades Often requires temporary
downtimes transparent

Un availability
risk High Low

The 3rd dimension of scaling

Data partitioning

• divide large databases into smaller datasets hosted on
different servers

Data partitioning

• divide large databases into smaller datasets hosted on
different servers

https://w
w

w
.educative.io/answ

ers/w
hat-is-database-sharding

Peer-to-Peer (P2P) Architecture

• Each node can both
• be a consumer of services offered by others
• provides services to others

• Variants :
• “pure": resource discovery mechanism
• hybrid: with a central server to connect (but then direct

exchanges between peers)

htt
ps

:/
/p

ub
s.

op
en

gr
ou

p.
or

g/
ar

ch
ite

ct
ur

e/
to

ga
f8

-d
oc

/a
rc

h/
ch

ap
31

.h
tm

l

Advantages of P2P :
example of file sharing

• “natural” scale up
the more a file is requested, the more it is available

• robust
(apart from single point of failure if there is central
connection server)

• Segmented P2P file transfer (chunks) system:
• cancels the asymmetry of ADSL
• limits the effects of sudden disconnections from the

supplier
• a file can be globally available without anyone having the

whole file

P2P challenges

• Peer discovery
solutions:
• central node
• Distributed Hash Table

• Free-riders
• solution: incentive mechanisms

• Peer volatility
• Trust
• solution: redundancy and comparison

Elasticity
ability to dynamically adapt and scale resources up or

down as needed

Load not always regular, nor
predictable

• seasonal activity with
foreseeable peaks of
activity (daily, monthly,
yearly...)

• rapid growth, little
visibility (marketing
effects and buzz...)

APKMirror uploade
Pokémon Go sur ses
serveurs

Visits :
from 600,000 on 5/7/16
to 4,000,000 on 6/7/16

htt
ps

:/
/b

lo
g.

w
or

ka
re

a.
co

m
/t

re
nd

s-
w

he
n-

do
-p

eo
pl

e-
sh

op
-o

nl
in

e

htt
ps

:/
/w

w
w

.p
cw

or
ld

.c
om

/a
rti

cl
e/

30
92

96
9/

go
tta

-c
at

ch
-e

m
-a

ll-
5-

fa
ct

s-
th

at
-p

ro
ve

-p
ok

m
on

-g
o-

is-
ea

tin
g-

th
e-

w
or

ld
.h

tm
l

Sizing

• Undersized
infrastructure:
• Cheap
• Cannot handle the load

• Oversized infrastructure:
• Absorb the load peaks

easily
• Expensive, lots of

wasted resources
• Difficult to predict how

large is large enough

htt
ps

:/
/d

1.
aw

ss
ta

tic
.c

om
/w

hi
te

pa
pe

rs
/a

w
s-

w
eb

-h
os

tin
g-

be
st

-p
ra

cti
ce

s.
pd

f

Key elements for elasticity

• Dynamic scaling
Resources can be added or removed as needed without
interrupting the service

• Resource provisioning
Ability to allocate additional resources when demand
increases and de-allocate resources when demand decreases

• Automation
to scale resources without manual intervention, ensuring a
rapid and efficient response to changing workloads

Elasticity enabler technologies

• Virtualization of resources + automation

Virtual Machines

• Software emulation of a physical computer

htt
p:

//
w

w
w

.it
-n

s.
co

m
/v

irt
ua

lis
ati

on
-e

t-s
to

ra
ge

.p
hp

Physical Machine Virtual Machine

Virtual Machines

• Enable vertical scaling: CPU, memory, and storage can
be easily adjusted for a VM

• Some horizontal scalability: buy more instances from
the cloud provider (Iaas cloud model)

Managed by the user
Managed by the cloud provider

htt
ps

:/
/b

lo
g.

dy
s.

co
m

/c
lo

ud
-ia

as
-p

aa
s-

sa
as

/

Containers

• Containers share the host operating system's kernel
but are isolated from each other, and encapsulate an
application and its dependencies

htt
ps

:/
/w

w
w

.b
ac

kb
la

ze
.c

om
/b

lo
g/

vm
-v

s-
co

nt
ai

ne
rs

/

Containers

• Lighter than VMs, offer faster deployment, well-suited
for horizontal scaling
• CaaS cloud model

Container orchestrator

• tool or platform designed to automate the
deployment, management, scaling, and operation of
containerized applications
• Key functionalities:
• Start, stop containers based on demand or on metrics
• Monitor the containers and restart or replace unresponsive

containers
• Connect containers to the network
• Logging (allow to track performance, diagnose issues…)

Container orchestrator

• Enable horizontal scaling: you can easily scale
applications by adding or removing container
instances
• KaaS cloud model which enables end users to deploy

and manage Kubernetes clusters in on-demand and
self-service mode

Function as a Service (FaaS)

• cloud model where individual stateless pieces of code
are executed in response to events or triggers, the
FaaS platform dynamically allocates resources to
execute functions, and scales down when there's no
activity
• highly cost-effective for sporadic workloads

Resilience

• Fault Tolerance:
• continue operation, or at least gracefully degrade, even in

the presence of failures

• High Availability:
• minimize downtime, recover quickly from failures

• A common strategy: redundancy and replication

Redundancy

• Active-passive, active-active redundancies...

• Geographical distribution
• Disk mirroring, redundant network connections,

redundant power supply, etc.

PAC theorem applies here…
(Impossible to ensure
simultaneously
• Partition tolerance,
• Availability and
• Consistency)

Mainframes clustering

Data layer

Service layer

htt
ps

:/
/w

w
w

.ib
m

.c
om

/s
up

po
rt

/k
no

w
le

dg
ec

en
te

r/
zo

sb
as

ic
s/

co
m

.ib
m

.zo
s.

zm
ai

nf
ra

m
e/

zc
on

c_
cl

us
te

rP
lS

ys
.h

tm

Example of HA&FT Architecture

https://docplayer.net/4134029-Software-as-a-service-saas-on-aws-business-and-architecture-overview.html

Concluding Thoughts

• Scaling calls for the seamless integration of both
architectural and technical solutions
• Requires a systemic approach: targeted optimization may

not yield global benefits
• Requires a multi-skilled team, with software design to

commercial solutions experience

“12 factor app”
htt

ps
:/

/a
rc

hi
te

ct
ur

en
ot

es
.c

o/
12

-fa
ct

or
-a

pp
-re

vi
sit

ed
/

	Slide 1
	Architectural Elements for Scalability, HA & FT
	Scalability
	Scalability (2)
	Mitigate network latency (under increased load)
	Content Delivery Network (CDN)
	Fog computing and edge computing
	Mitigate server latency (under increased load)
	Caches
	DB Caching Strategies
	Vertical scaling (scale up)
	Horizontal scaling (scale out)
	Horizontal scaling (scale out) (2)
	Software architecture for horizontal scaling
	Load balancing
	Hardware load balancer
	DNS-based load balancing
	Solfware load balancer
	Horizontal / Vertical Scalability
	The 3rd dimension of scaling
	Data partitioning
	Data partitioning (2)
	Peer-to-Peer (P2P) Architecture
	Advantages of P2P : example of file sharing
	P2P challenges
	Elasticity
	Load not always regular, nor predictable
	Sizing
	Key elements for elasticity
	Elasticity enabler technologies
	Virtual Machines
	Virtual Machines (2)
	Containers
	Containers (2)
	Container orchestrator
	Container orchestrator (2)
	Function as a Service (FaaS)
	Resilience
	Redundancy
	Mainframes clustering
	Example of HA&FT Architecture
	Concluding Thoughts
	“12 factor app”

