
2-tier vs. 3-tier Architectures for Data Processing Software
Dmitriy Dorofeev

YASP Ltd.
Saint-Petersburg, Russia

dima@yasp.com

Sergey Shestakov
Luxms Group

Saint-Petersburg, Russia
serg@luxmsbi.com

ABSTRACT
The rise of data-centric computing, NoSQL and newSQL databases
with powerful scripting capabilities, popularity of REST API raise a
question: is it feasible to serve clients directly from the DB, with
REST API server residing inside the database? What would be the
balance between data processing, application, and presentation
logic for such a scenario on a server side and on a client side?

In this paper we will compare 2 real-world implementations of
the commercial Luxms BI analytical platform based on 2-tier and
on 3-tier architecture.

Our research shows that despite popularity of 3-tier architec-
tures, in-database application server approach delivers better per-
formance in both throughput and latency in analytical client-server
application development.

CCS CONCEPTS
• Software and its engineering→ n-tier architectures; 3-tier
architectures;

KEYWORDS
software architecture, 2-tier, 3-tier, benchmarks, data processing,
data centric

ACM Reference Format:
Dmitriy Dorofeev and Sergey Shestakov. 2018. 2-tier vs. 3-tier Architec-
tures for Data Processing Software. In The 3rd International Conference
on Applications in Information Technology (ICAIT’18), November 1–3, 2018,
Aizu-Wakamatsu, Japan. ACM, New York, NY, USA, Article 13, 6 pages.
https://doi.org/10.1145/3274856.3274869

1 INTRODUCTION
Traditionally, 3-tier architectures were the most popular among
all possible multi-tier (n-tier) architectures. In a 3-tier architecture,
there are separate subsystems for presentation, business/application
logic, and data management [9]. With 2-tier architectures, it’s pre-
sentation layer running on a client and a data management layer
residing on a server. Application logic may reside on the client
(fat clinet) or on the server (thin client). Some researchers encour-
aged data centric design for n-tier architectures to provide better
performance and faster development [4] [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIT’18, November 1–3, 2018, Aizu-Wakamatsu, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6516-1/18/11. . . $15.00
https://doi.org/10.1145/3274856.3274869

Data-centric approach becomes even more important for en-
terprise analytical processing. Recent explosive growth of data
(internet of things, social networks, etc.) shifts value from business
logic to data itself [5] and requires re-architecturing of current
solutions for the big data world.

Google implemented MapReduce algorithm in the distributed
environment on a large cluster of commodity machines [2] clearly
follow data-centric architecture.

Another promising trend in data-centric architectures is fog
computing [1], with application logic placed on fog servers where
data are pre-collected and pre-aggregated before going to the long
term Cloud storage and analytics.

If we consider 2-tier architecture with a fat client, the big data
challenge makes network communications a bottleneck for any
analytical task, though there are attempts to address that issue, like
RIA cloud architectures [11] [12]. Rather, implementation of a smart
thin client designed for minimizing network traffic and minimizing
client side data cache should address the big data problem in a
more efficient way. Such a client should be able to delegate heavy,
data-intensive queries to the server leveraging Massive Parallel
Processing/Hadoop storages, and receive chunks of data optimized
for visualization.

Strong efforts were made to provide in-memory computing ca-
pabilities [7]. Though very robust and quite successful for certain
types of workloads, non-relational in-memory engines (NoSQL
including) proved not that flexible and functionally powerful for
data-intensive analytical processing and were not able to replace
SQL-based logic. It proved very inefficient to replace complex SQL
queries with manually written business logic composed of numer-
ous loops and conditional statements.

In short, original NoSQL engines failed to provide developers
of analytical systems with tools matching relational algebra. De-
velopers pushed many NoSQL vendors to implement SQL support,
examples include Cassandra, EllasticSearch and CouchBase. We see
more and more examples of hybrid NewSQL engines [10], which
try to combine the best of two worlds - ACID properties (Atomic-
ity, Consistency, Isolation, Durability) and relational algebra run-
ning against distributed databases with in-memory support [6].
Still these engines lack the advanced query power of classical re-
lational database management systems (RDBMS), their support of
SQL mostly is limited to some subset of ANSI SQL 99, and lacks
procedural extensions.

In the meanwhile, RDBMS evolved its querying and in-memory
capabilities. Modern relational database engines now offermore and
more advanced capabilities of procedural language extensions to
SQL, which are good enough to implement all the required business
logic inside the database. This creates new opportunities for imple-
menting data-centric architectures which is particularly important
for such data-intensive tasks as analytical processing.

63

https://doi.org/10.1145/3274856.3274869
https://doi.org/10.1145/3274856.3274869

ICAIT’18, November 1–3, 2018, Aizu-Wakamatsu, Japan Dorofeev, D., Shestakov S.

2 DATA-CENTRIC APPROACH FOR
ANALYTICAL PROCESSING

Analytical processing tasks frequently require runningmany queries
to the database for completion of a single user interaction. This
is especially true for analytical data visualization. For example,
even preparing a single dashboard requires lots of requests and
interactions with data sources, and even running these in paral-
lel won’t solve the problem completely. 3-tier architecture allows
to run queries in parallel, yet requires a lot of efforts to sync the
processing of the results.

Obviously data transfer between database and application server
will be a bottleneck for such applications. Any optimization in this
area will improve latency and overall response times.

All these considerations along with recent advancements of
RDBMS led us to a concept of data-centric 2-tier architecture, with
in-database application server.

Our implementation of 2-tier architecture is based on PostgreSQL
9.6, with application logic coded in PL/pgSQL. PL/pgSQL is most
suitable for data-centric applications because it has excellent SQL
integration, JSON processing support, rich library of text and math
functions.

The suggested database-centric 2-tier approach is not PostgreSQL
specific, it may be implemented in any database with stored proce-
dures support. For example: Oracle commercial RDBMS, Tarantool
NoSQL database and Redis in-memory key-value storage.

3 3-TIER ARCHITECTURE REFERENCE
IMPLEMENTATION

Presentation
Tier Logic Tier Database Tier

Figure 1: 3-tier architecture

Our 3-tier implementation consists of a client browser based appli-
cation implemented in HTML 5/Javascript, application server imple-
mented in Java 8, and a database server implemented in PostgreSQL
9.6. We run Nginx as an HTTP proxy in front of an application
server to provide security and load balancing.

Let’s consider data flow from the client to the server and back.

(1) Client creates a JSON formatted HTTP request for the data
(2) HTTP proxy forwards the HTTP request to the application

server as-is
(3) Application server parses the request and creates a series of

SQL queries based on this
(4) JDBC layer (part of the application server) uses a wire data-

base protocol to send the SQL queries to the database

After the completion of database querying, the data is flowing
back in reverse order. The overall process is illustrated in Figure 2.

Tier 3Tier 2Tier 1

Web Server App Server JDBCWeb Client

dispatch
dispatch

return

dispatch

dispatch

JSON Request Proxy & Load
Balancer

Converts to
SQL

Converts to DB
Protocol

Reads Data

returnreturnreturn

Converts to
JSON

Converts from
DB Protocol

Database
Engine

Figure 2: 3-tier request processing diagram

In practice, application server needs to make several queries to
the database in order to process incoming request and assemble
the response. So we can consider interaction with database as a
potential bottleneck for the 3-tier implementation, even if SQL
queries will run in parallel within one client request.

4 DATA-CENTRIC 2-TIER ARCHITECTURE
REFERENCE IMPLEMENTATION

Presentation
Tier

Logic And
Database Tier

Figure 3: 2-tier architecture

Our data-centric 2-tier implementation consists of the same client
browser based application implemented in HTML 5/Javascript and
an in-database application server implemented in PL/pgSQL along
with data schema located within the same PostgreSQL 9.6 database
engine. Nginx plays a role of HTTP proxy handling requests in
front of the application server to provide security and static files
serving. We’ve used HAProxy for load balancing and queueing
incoming queries to the application server.

Here’s a client-server data flow described step-by-step:
(1) Client creates a JSON-formatted HTTP request for the data

(format is identical to the 3-tier client data format)
(2) HTTP proxy forwards the HTTP request to the in-database

application server calling a stored procedure with HTTP
request headers and body as parameters

(3) In-database application server parses request and dispatches
it to the appropriate PL/pgSQL procedure. As a result, sev-
eral SQL queries can be executed by the database based on
business logic and request details.

Similarly to the 3-tier architecture described in Section 3, the
data upon querying completion starts to flow back in reverse order.
This process is shown in Figure 4.

Nginx functionality can be extended with Lua programming
language, so we’ve implemented a proxy between HTTP and stored
procedure - this required about 200 lines of Lua code.

In-database application server is written in PL/pgSQL and imple-
ments HTTP routing, authentication, authorization, generic CRUD
operations on tables, and specific API end-points when CRUD is not

64

2-tier vs. 3-tier Architectures for Data Processing Software ICAIT’18, November 1–3, 2018, Aizu-Wakamatsu, Japan

enough. SQL queries and PL/pgSQL procedures cannot run in par-
allel within one client session, a significant drawback as compared
with Java-based 3-tier implementation.

The complete application server codebase is roughly 6000 PL/pgSQL
lines of code (LOC). This is verbose implementation of application
logic as there are no third-party modules typical for Java ecosystem.
The HTTP request routing part is only 800 LOC.

Tier 2Tier 1

Web Server In Database
App ServerWeb Client

dispatch

dispatch

dispatch

JSON Request Proxy & Load
Balancer

Converts to
SQL

Reads Data

returnreturnreturn

Converts to
JSON

Database
Engine

Figure 4: 2-tier request processing diagram

5 2-TIER VS 3-TIER SOFTWARE
DEVELOPMENT LIFE CYCLE COMPARISON

In this section we outline pros and cons of the tools available for
Software Development Life Cycle (SDLC) phases of our 3-tier and
database-centric 2-tier reference implementations, respectively. His-
torically, shift of popularity from 2-tier to 3-tier architectures was
heavily influenced by better tools for SDLC, so it’s important to
revisit and check current state of the tools available.

5.1 Development
Java-based 3-tier posesses fully-functional, feature-rich IDE, de-
bugger and profiler. PL/pgSQL-based data-centric 2-tier does not
provide fully-fledged IDE, debugging is possible with tools like
omniDB/pgAdmin, profiling is possible with PL Profiler extension
or pg_stat_statements view. Thus, Java offers better development
tools, but PL/pgSQL provides a must-have set of tools for software
development.

Java is a compiled language and requires to build complete appli-
cation before it can be run with JVM. PL/pgSQL allows to change
code on a per function granularity, significantly faster than with
Java.

5.2 Testing
For testing, Java-based 3-tier has wide selection of frameworks and
tools for every taste. PL/pgSQL-based data-centric 2-tier presumes
that developer should take care of testing environment, and only
few frameworks are available. It’s easier to setup test environment
with Java, but it can be done with PL/pgSQL as well.

5.3 Deployment
Java-based 3-tier provides good support for JAR file upload &
restart, even hot reload with Java Servlet Containers is supported.

PL/pgSQL-based data-centric 2-tier has decent support for trans-
actional batched CREATE OR REPLACE FUNCTION scripts. It’s
similar to hot reload, but requires some tooling and discipline. So,
for Deployment phase, PL/pgSQL matches Java.

5.4 Operation
For runtime, classical 3-tier requires an additional process and/or
server with JVM settings tuning. Data-centric 2-tier runs in the
database process, no extra hardware is required.

For monitoring, classical 3-tier can be monitored using wide
selection of JMX-compatible tools, whilst data-centric 2-tier can
be monitored with standard database tools. Thus, for Operational
phase, classical 3-tier solution is better monitored, but data-centric
2-tier is up to the task too.

5.5 Maintenance and Support
It is resource-consuming to keep the application server of classical
3-tier on par with database schema. Flawless upgrade may be tricky
and require interruptions of production. While minor changes can
be done easily, undertaking some major changes lead to very com-
plex and risky projects. For data-centric 2-tier, on opposite, it’s easy
to keep in sync the application server and database schema. Minor
changes can be done quickly, and major changes can be done with
due preparations. But this flexibility should come in hand with dis-
cipline and strict rules. We come to a conclusion that maintaining
and Supporting phase for a 3-tier implementations is much more
complex as compared with flexible data-centric 2-tier.

6 BENCHMARKING
Benchmarking was performed with Locust [3] open source tool.
Locust was configured to run 1 master and 4 slave processes on a
dedicated Centos 7.2.1511 Linux virtual machine with 16 CPUs and
8Gb RAM. Locust was configured to send HTTP requests randomly
with minimum delay between requests of 1 seconds and maximum
delay of 3 seconds per Locust virtual user.

We were running Luxms BI server on a Centos Linux version
7.3.1611, dedicated virtual machine with 8 CPUs and 16Gb RAM.
3-tier and 2-tier versions were running on the same hardware and
leveraged PostgreSQL 9.6.5 database. In order to check different
aspects of server-side implementations we’ve generated several
types of workload.

6.1 Lightweight workload
Lightweight workloads were run to measure maximum possible
throughput using specially designed random requests - the idea
was to generate tiny responses, but still require server to perform
some SQL activity. 4000 Locust users were configured to generate
the load. In total, 200,000 lightweight requests were measured. As
a result, 2-tier solution has demonstrated 3 times lower latency
(Figure 5), and processed twice more requests per second (Figure 6).

65

ICAIT’18, November 1–3, 2018, Aizu-Wakamatsu, Japan Dorofeev, D., Shestakov S.

Median Average Min Max
0

5

10

15

20

·103

1,800 1,860
27

10,311

6,500 6,493
5,641

21,095

Re
sp
on

se
tim

e,
m
s

2-tier 3-tier

Figure 5: 2-tier vs. 3-tier response time statistics (lightweight
workload)

RPS
0

200

400

600

800

1,000 929.06

469.45

Re
qu

es
ts
pe
rs

ec
on

d

2-tier 3-tier

Figure 6: 2-tier vs. 3-tier RPS (lightweight workload)

Distribution of response times under lightweight workload is
presented on Figure 7.

3-tier implementation under workload of 5,000 Locust users
resulted in massive timeouts, while 2-tier performed well. We con-
clude that 5,000 simultaneous users is the upper limit for 3-tier
implementation in our test environment.

6.2 MediumWorkload
Medium workloads were run using real-world dataset with about
90 millions records in facts table. Running random requests against

50 66 75 80 90 95 98 99 100
0

5

10

15

20

·103

1,800 2,000 2,100 2,100 2,300 2,400
2,700 3,000

10,311

6,500 6,600 6,700 6,700 6,900 7,100
7,500 7,700

21,095

Percent of responses, (%)

Re
sp
on

se
tim

e,
m
s

2-tier 3-tier

Figure 7: 2-tier vs. 3-tier response time - percentile (light-
weight workload)

Median Average Min Max
0

5

10

15

·103

12,000 11,997

7,279

16,312

14,000 14,260

9,966

17,288

Re
sp
on

se
tim

e,
m
s

2-tier 3-tier

Figure 8: 2-tier vs. 3-tier response time statistics (medium
workload)

this dataset resulted in responses sized up to 120Kb in JSON format.
Server needed to check 3 tables with dimensions data and scan facts
table randomly to prepare responses. Typical SQL query against
facts table took 100ms on a database side (direct SQL query), so it
is absolute minimum response time for the application server.

400 Locust users were configured to perform these requests.

66

2-tier vs. 3-tier Architectures for Data Processing Software ICAIT’18, November 1–3, 2018, Aizu-Wakamatsu, Japan

RPS
0

10

20

30 28.24

24.45

Re
qu

es
ts
pe
rs

ec
on

d

2-tier 3-tier

Figure 9: 2-tier vs. 3-tier RPS (medium workload)

50 66 75 80 90 95 98 99 100
0

5

10

15

·103

12,000 12,000
13,000 13,000 13,000

14,000 14,000
15,000

16,822

14,000
15,000 15,000 15,000

16,000 16,000 16,000 16,000
17,288

Percent of responses, (%)

Re
sp
on

se
tim

e,
m
s

2-tier 3-tier

Figure 10: 2-tier vs. 3-tier response time - percentile
(medium workload)

According to our benchmarks, 2-tier implementation performed
15% better on Medium workloads (Figures 8, 9 and 10).

6.3 High Workload
High workload leverages same queries as Medium one, but with
increased number of simultaneous users, up to the server limit.

With 800 Locust users, classical 3-tier was able to complete only
1875 requests and all other requests were failing. Because of that we

Median Average Min Max
0

1

2

3

·104

26,000 26,226

16,999

30,037

Re
sp
on

se
tim

e,
m
s

2-tier

Figure 11: 2-tier response time statistics (high workload)

RPS
0

10

20

30 28.56

Re
qu

es
ts
pe
rs

ec
on

d

2-tier

Figure 12: 2-tier RPS (high workload)

provide statistics only for 2-tier, which has only 19 timeout errors
out of 10,000 requests.

2-tier response time statistics for heavy workload is shown on
Figure 11 and measured RPS is on Figure 12.

7 CONCLUSIONS
We have compared and benchmarked implementations of a classical
3-tier architecture and data-centric 2-tier architecture for Luxms
BI, an analytical engine for decision making.

Our benchmarks demonstrated that data-centric 2-tier architec-
ture with in-database app server has 15% better performance as

67

ICAIT’18, November 1–3, 2018, Aizu-Wakamatsu, Japan Dorofeev, D., Shestakov S.

compared with classical 3-tier architecture with Java app server
on identical hardware resources. On synthetic benchmarks 2-tier
implementation shown a twice better RPS results than 3-tier one.

The data-centric approach also brings development more agility
with features like incremental code updates.

More detailed analysis of the gathered results is a subject for
future work. Extensive profiling is required to find slowest parts of
the query processing pipeline for both 2-tier and 3-tier implemen-
tations.

To sum up, the data-centric 2-tier architecture implementation is
more robust, resource efficient and agile, as compared with classical
3-tier implementation.

REFERENCES
[1] Rabindra K. Barik, Harishchandra Dubey, and Kunal Mankodiya. 2017. SoA-Fog:

Secure Service-Oriented Edge Computing Architecture for Smart Health Big
Data Analytics. CoRR abs/1712.09098 (2017). arXiv:1712.09098 http://arxiv.org/
abs/1712.09098

[2] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI’04: Sixth Symposium on Operating System Design and
Implementation. San Francisco, CA, 137–150.

[3] Jonatan Heyman, Carl Byström, JoakimHamrén, and HugoHeyman. 2017. Locust.
Retrieved June 11, 2018 from https://locust.io/

[4] Paul D. Manuel and Jarallah AlGhamdi. 2003. A Data-centric Design for N-tier
Architecture. Inf. Sci. Inf. Comput. Sci. 150, 3-4 (April 2003), 195–206. https:
//doi.org/10.1016/S0020-0255(02)00377-8

[5] Timothy Prickett Morgan. 2016. The Emergence Of Data-Centric Comput-
ing. Retrieved June 11, 2018 from https://www.nextplatform.com/2016/10/
06/emergence-data-centric-computing/

[6] John Piekos. 2015. SQL vs. NoSQL vs. NewSQL: Finding the Right So-
lution. Retrieved June 11, 2018 from http://dataconomy.com/2015/08/
sql-vs-nosql-vs-newsql-finding-the-right-solution/

[7] P. Siegl, R. Buchty, and M. Berekovic. 2016. Data-Centric Computing Frontiers:
A Survey On Processing-In-Memory. In Proceedings of the Second International
Symposium on Memory Systems, MEMSYS 2016, Washington, DC, USA, October
3-6, 2016. ACM, 295–308. https://doi.org/10.1145/2989081.2989087

[8] Nitin Uplekar. 2001. Building Data-Centric n-Tier Enterprise Systems. Retrieved
June 11, 2018 from http://www.powervision.com/html/news/n_tier_arch.pdf

[9] Wikipedia. 2018. Multitier architecture — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Multitier%20architecture&oldid=
822900859. [Online; accessed 11-June-2018].

[10] Wikipedia. 2018. NewSQL — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=NewSQL&oldid=837852262. [Online; accessed
13-June-2018].

[11] Wenjun Zhang. 2010. 2-Tier Cloud Architecture with maximized RIA and Sim-
pleDB via minimized REST. 2010 2nd International Conference on Computer
Engineering and Technology 6 (2010), V6–52–V6–56.

[12] Wenjun Zhang. 2012. 2-Tier Cloud Architecture and Application in Electronic
Health Record. JSW 7 (2012), 765–772.

68

http://arxiv.org/abs/1712.09098
http://arxiv.org/abs/1712.09098
http://arxiv.org/abs/1712.09098
https://locust.io/
https://doi.org/10.1016/S0020-0255(02)00377-8
https://doi.org/10.1016/S0020-0255(02)00377-8
https://www.nextplatform.com/2016/10/06/emergence-data-centric-computing/
https://www.nextplatform.com/2016/10/06/emergence-data-centric-computing/
http://dataconomy.com/2015/08/sql-vs-nosql-vs-newsql-finding-the-right-solution/
http://dataconomy.com/2015/08/sql-vs-nosql-vs-newsql-finding-the-right-solution/
https://doi.org/10.1145/2989081.2989087
http://www.powervision.com/html/news/n_tier_arch.pdf
http://en.wikipedia.org/w/index.php?title=Multitier%20architecture&oldid=822900859
http://en.wikipedia.org/w/index.php?title=Multitier%20architecture&oldid=822900859
http://en.wikipedia.org/w/index.php?title=NewSQL&oldid=837852262
http://en.wikipedia.org/w/index.php?title=NewSQL&oldid=837852262

	Abstract
	1 Introduction
	2 Data-Centric Approach for Analytical Processing
	3 3-tier Architecture Reference Implementation
	4 Data-centric 2-tier Architecture Reference Implementation
	5 2-tier vs 3-tier Software Development Life Cycle Comparison
	5.1 Development
	5.2 Testing
	5.3 Deployment
	5.4 Operation
	5.5 Maintenance and Support

	6 Benchmarking
	6.1 Lightweight workload
	6.2 Medium Workload
	6.3 High Workload

	7 Conclusions
	References

